Sure! Below is the Java code for finding the "Median of 2 Sorted Arrays of Equal Size" using three different methods. Each method is encapsulated in a function, and the output is printed to the console. ```html Median of 2 Sorted Arrays of Equal Size - Java Program

Median of 2 Sorted Arrays of Equal Size

Understanding the Problem

The goal is to find the median of two sorted arrays of equal size.

Method 1: Simple Merge

This method merges the two arrays and finds the median.

public class MedianOfSortedArrays {
    public static double findMedianSortedArrays(int[] arr1, int[] arr2) {
        int n = arr1.length;
        int[] merged = new int[2 * n];
        int i = 0, j = 0, k = 0;

        while (i < n && j < n) {
            if (arr1[i] < arr2[j]) {
                merged[k++] = arr1[i++];
            } else {
                merged[k++] = arr2[j++];
            }
        }
        while (i < n) merged[k++] = arr1[i++];
        while (j < n) merged[k++] = arr2[j++];

        return (merged[n - 1] + merged[n]) / 2.0;
    }

    public static void main(String[] args) {
        int[] arr1 = {1, 3};
        int[] arr2 = {2, 4};
        System.out.println("Median: " + findMedianSortedArrays(arr1, arr2));
    }
}
            

Output:

Median: 2.5

Method 2: Binary Search

This method uses binary search to find the median efficiently.

public class MedianOfSortedArrays {
    public static double findMedianSortedArrays(int[] arr1, int[] arr2) {
        int n = arr1.length;
        int low = 0, high = n;

        while (low <= high) {
            int partition1 = (low + high) / 2;
            int partition2 = n - partition1;

            int maxLeft1 = (partition1 == 0) ? Integer.MIN_VALUE : arr1[partition1 - 1];
            int minRight1 = (partition1 == n) ? Integer.MAX_VALUE : arr1[partition1];

            int maxLeft2 = (partition2 == 0) ? Integer.MIN_VALUE : arr2[partition2 - 1];
            int minRight2 = (partition2 == n) ? Integer.MAX_VALUE : arr2[partition2];

            if (maxLeft1 <= minRight2 && maxLeft2 <= minRight1) {
                return (Math.max(maxLeft1, maxLeft2) + Math.min(minRight1, minRight2)) / 2.0;
            } else if (maxLeft1 > minRight2) {
                high = partition1 - 1;
            } else {
                low = partition1 + 1;
            }
        }
        throw new IllegalArgumentException("Input arrays are not sorted.");
    }

    public static void main(String[] args) {
        int[] arr1 = {1, 3};
        int[] arr2 = {2, 4};
        System.out.println("Median: " + findMedianSortedArrays(arr1, arr2));
    }
}
            

Output:

Median: 2.5

Method 3: Using a Combined Array

This method combines the arrays and finds the median directly.

import java.util.Arrays;

public class MedianOfSortedArrays {
    public static double findMedianSortedArrays(int[] arr1, int[] arr2) {
        int n = arr1.length;
        int[] combined = new int[2 * n];
        System.arraycopy(arr1, 0, combined, 0, n);
        System.arraycopy(arr2, 0, combined, n, n);
        Arrays.sort(combined);
        return (combined[n - 1] + combined[n]) / 2.0;
    }

    public static void main(String[] args) {
        int[] arr1 = {1, 3};
        int[] arr2 = {2, 4};
        System.out.println("Median: " + findMedianSortedArrays(arr1, arr2));
    }
}
            

Output:

Median: 2.5