Minimize the Maximum Difference Between Heights
Understanding the Problem
The goal is to minimize the maximum difference between the heights of towers after modifying them within a given range.
Method 1: Sorting and Greedy Approach
This method sorts the array and then modifies heights by either increasing or decreasing within the given range.
#include <iostream> #include <algorithm> using namespace std; int minimizeDifference(int arr[], int n, int k) { sort(arr, arr + n); int minDiff = arr[n - 1] - arr[0]; for (int i = 1; i < n; i++) { int minHeight = min(arr[0] + k, arr[i] - k); int maxHeight = max(arr[n - 1] - k, arr[i - 1] + k); minDiff = min(minDiff, maxHeight - minHeight); } return minDiff; } int main() { int arr[] = {1, 15, 10}; int n = sizeof(arr) / sizeof(arr[0]); int k = 6; cout << "Minimum difference: " << minimizeDifference(arr, n, k); return 0; }
Output:
Minimum difference: 5
Method 2: Brute Force
This method tries all possibilities of adding or subtracting k from each element.
#include <iostream> #include <climits> using namespace std; int findMinDifference(int arr[], int n, int k) { int minDiff = INT_MAX; for (int i = 0; i < (1 << n); i++) { int modifiedArr[n]; for (int j = 0; j < n; j++) { modifiedArr[j] = (i & (1 << j)) ? arr[j] + k : arr[j] - k; } int minHeight = *min_element(modifiedArr, modifiedArr + n); int maxHeight = *max_element(modifiedArr, modifiedArr + n); minDiff = min(minDiff, maxHeight - minHeight); } return minDiff; } int main() { int arr[] = {1, 15, 10}; int n = sizeof(arr) / sizeof(arr[0]); int k = 6; cout << "Minimum difference: " << findMinDifference(arr, n, k); return 0; }
Output:
Minimum difference: 5
Method 3: Optimized Sorting Approach
An optimized approach that modifies heights while iterating through the sorted array.
#include <iostream> #include <algorithm> using namespace std; int getMinimizedDifference(int arr[], int n, int k) { sort(arr, arr + n); int minDiff = arr[n - 1] - arr[0]; int smallest = arr[0] + k, largest = arr[n - 1] - k; if (smallest > largest) swap(smallest, largest); for (int i = 1; i < n - 1; i++) { int decrease = arr[i] - k; int increase = arr[i] + k; if (decrease >= smallest || increase <= largest) continue; if (largest - decrease <= increase - smallest) smallest = decrease; else largest = increase; } return min(minDiff, largest - smallest); } int main() { int arr[] = {1, 15, 10}; int n = sizeof(arr) / sizeof(arr[0]); int k = 6; cout << "Minimum difference: " << getMinimizedDifference(arr, n, k); return 0; }
Output:
Minimum difference: 5