Find Largest Sum Contiguous Subarray
Understanding the Problem
The goal is to find the subarray with the maximum sum in a given array using different methods.
Method 1: Kadane's Algorithm
This method efficiently finds the largest sum contiguous subarray using dynamic programming.
public class MaxSubarrayKadane {
public static int maxSubArraySum(int[] arr) {
int maxSoFar = arr[0], maxEndingHere = arr[0];
for (int i = 1; i < arr.length; i++) {
maxEndingHere = Math.max(arr[i], maxEndingHere + arr[i]);
maxSoFar = Math.max(maxSoFar, maxEndingHere);
}
return maxSoFar;
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum contiguous sum: " + maxSubArraySum(arr));
}
}
Output:
Maximum contiguous sum: 6
Method 2: Divide and Conquer
This method finds the largest sum subarray by dividing the array into halves recursively.
public class MaxSubarrayDivideConquer {
public static int maxCrossingSum(int[] arr, int l, int m, int h) {
int sum = 0, leftSum = Integer.MIN_VALUE, rightSum = Integer.MIN_VALUE;
for (int i = m; i >= l; i--) {
sum += arr[i];
leftSum = Math.max(leftSum, sum);
}
sum = 0;
for (int i = m + 1; i <= h; i++) {
sum += arr[i];
rightSum = Math.max(rightSum, sum);
}
return Math.max(Math.max(leftSum + rightSum, leftSum), rightSum);
}
public static int maxSubArraySum(int[] arr, int l, int h) {
if (l == h) return arr[l];
int m = (l + h) / 2;
return Math.max(Math.max(maxSubArraySum(arr, l, m), maxSubArraySum(arr, m + 1, h)), maxCrossingSum(arr, l, m, h));
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum contiguous sum: " + maxSubArraySum(arr, 0, arr.length - 1));
}
}
Output:
Maximum contiguous sum: 7
Method 3: Brute Force
This method checks all subarrays and computes their sums to find the maximum sum.
public class MaxSubarrayBruteForce {
public static int maxSubArraySum(int[] arr) {
int maxSum = arr[0];
for (int i = 0; i < arr.length; i++) {
int currentSum = 0;
for (int j = i; j < arr.length; j++) {
currentSum += arr[j];
maxSum = Math.max(maxSum, currentSum);
}
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum contiguous sum: " + maxSubArraySum(arr));
}
}
Output:
Maximum contiguous sum: 6