Kadane’s Algorithm
Understanding the Problem
The goal is to find the maximum sum of a contiguous subarray in a given array using Kadane's Algorithm.
Method 1: Kadane’s Algorithm
This method efficiently finds the maximum sum subarray in O(n) time.
def kadane_algorithm(arr):
max_sum = float('-inf')
current_sum = 0
for num in arr:
current_sum += num
max_sum = max(max_sum, current_sum)
if current_sum < 0:
current_sum = 0
return max_sum
arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print("Maximum sum subarray:", kadane_algorithm(arr))
Output:
Maximum sum subarray: 6
Method 2: Brute Force Approach
This method checks all possible subarrays and calculates their sums, leading to an O(n²) complexity.
def brute_force_max_subarray(arr):
max_sum = float('-inf')
for i in range(len(arr)):
sum_ = 0
for j in range(i, len(arr)):
sum_ += arr[j]
max_sum = max(max_sum, sum_)
return max_sum
arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print("Maximum sum subarray:", brute_force_max_subarray(arr))
Output:
Maximum sum subarray: 6
Method 3: Divide and Conquer Approach
This method uses recursion to divide the array and find the maximum sum subarray.
def max_crossing_sum(arr, l, m, h):
left_sum = float('-inf')
sum_ = 0
for i in range(m, l-1, -1):
sum_ += arr[i]
left_sum = max(left_sum, sum_)
right_sum = float('-inf')
sum_ = 0
for i in range(m + 1, h + 1):
sum_ += arr[i]
right_sum = max(right_sum, sum_)
return max(left_sum + right_sum, left_sum, right_sum)
def max_subarray_sum(arr, l, h):
if l == h:
return arr[l]
m = (l + h) // 2
return max(max_subarray_sum(arr, l, m),
max_subarray_sum(arr, m+1, h),
max_crossing_sum(arr, l, m, h))
arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print("Maximum sum subarray:", max_subarray_sum(arr, 0, len(arr) - 1))
Output:
Maximum sum subarray: 6