Kadane’s Algorithm
Understanding the Problem
The goal is to find the maximum sum of a contiguous subarray in a given array using Kadane's Algorithm.
Method 1: Kadane’s Algorithm
This method efficiently finds the maximum sum subarray in O(n) time.
public class KadaneAlgorithm {
public static int kadaneAlgorithm(int[] arr) {
int maxSum = Integer.MIN_VALUE, currentSum = 0;
for (int num : arr) {
currentSum += num;
maxSum = Math.max(maxSum, currentSum);
if (currentSum < 0)
currentSum = 0;
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum sum subarray: " + kadaneAlgorithm(arr));
}
}
Output:
Maximum sum subarray: 6
Method 2: Brute Force Approach
This method checks all possible subarrays and calculates their sums, leading to an O(n²) complexity.
public class BruteForceMaxSubarray {
public static int bruteForceMaxSubarray(int[] arr) {
int maxSum = Integer.MIN_VALUE;
for (int i = 0; i < arr.length; i++) {
int sum = 0;
for (int j = i; j < arr.length; j++) {
sum += arr[j];
maxSum = Math.max(maxSum, sum);
}
}
return maxSum;
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum sum subarray: " + bruteForceMaxSubarray(arr));
}
}
Output:
Maximum sum subarray: 6
Method 3: Divide and Conquer Approach
This method uses recursion to divide the array and find the maximum sum subarray.
public class DivideAndConquerMaxSubarray {
private static int max(int a, int b) { return Math.max(a, b); }
private static int maxCrossingSum(int[] arr, int l, int m, int h) {
int sum = 0, leftSum = Integer.MIN_VALUE, rightSum = Integer.MIN_VALUE;
for (int i = m; i >= l; i--) {
sum += arr[i];
leftSum = Math.max(leftSum, sum);
}
sum = 0;
for (int i = m + 1; i <= h; i++) {
sum += arr[i];
rightSum = Math.max(rightSum, sum);
}
return max(leftSum + rightSum, max(leftSum, rightSum));
}
private static int maxSubArraySum(int[] arr, int l, int h) {
if (l == h) return arr[l];
int m = (l + h) / 2;
return max(maxSubArraySum(arr, l, m), max(maxSubArraySum(arr, m + 1, h), maxCrossingSum(arr, l, m, h)));
}
public static void main(String[] args) {
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println("Maximum sum subarray: " + maxSubArraySum(arr, 0, arr.length - 1));
}
}
Output:
Maximum sum subarray: 6