Kadane’s Algorithm
Understanding the Problem
The goal is to find the maximum sum of a contiguous subarray in a given array using Kadane's Algorithm.
Method 1: Kadane’s Algorithm
This method efficiently finds the maximum sum subarray in O(n) time.
#include <iostream>
#include <climits>
using namespace std;
int kadaneAlgorithm(int arr[], int n) {
int maxSum = INT_MIN, currentSum = 0;
for (int i = 0; i < n; i++) {
currentSum += arr[i];
if (currentSum > maxSum)
maxSum = currentSum;
if (currentSum < 0)
currentSum = 0;
}
return maxSum;
}
int main() {
int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum sum subarray: " << kadaneAlgorithm(arr, n);
return 0;
}
Output:
Maximum sum subarray: 6
Method 2: Brute Force Approach
This method checks all possible subarrays and calculates their sums, leading to an O(n²) complexity.
#include <iostream>
#include <climits>
using namespace std;
int bruteForceMaxSubarray(int arr[], int n) {
int maxSum = INT_MIN;
for (int i = 0; i < n; i++) {
int sum = 0;
for (int j = i; j < n; j++) {
sum += arr[j];
if (sum > maxSum)
maxSum = sum;
}
}
return maxSum;
}
int main() {
int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum sum subarray: " << bruteForceMaxSubarray(arr, n);
return 0;
}
Output:
Maximum sum subarray: 6
Method 3: Divide and Conquer Approach
This method uses recursion to divide the array and find the maximum sum subarray.
#include <iostream>
#include <climits>
using namespace std;
int max(int a, int b) { return (a > b) ? a : b; }
int maxCrossingSum(int arr[], int l, int m, int h) {
int sum = 0, leftSum = INT_MIN, rightSum = INT_MIN;
for (int i = m; i >= l; i--) {
sum += arr[i];
if (sum > leftSum) leftSum = sum;
}
sum = 0;
for (int i = m + 1; i <= h; i++) {
sum += arr[i];
if (sum > rightSum) rightSum = sum;
}
return max(leftSum + rightSum, max(leftSum, rightSum));
}
int maxSubArraySum(int arr[], int l, int h) {
if (l == h) return arr[l];
int m = (l + h) / 2;
return max(maxSubArraySum(arr, l, m), max(maxSubArraySum(arr, m + 1, h), maxCrossingSum(arr, l, m, h)));
}
int main() {
int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Maximum sum subarray: " << maxSubArraySum(arr, 0, n - 1);
return 0;
}
Output:
Maximum sum subarray: 6